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Abstract

Spectroscopy can be simple defined as the the mea-
surement of interactions between light and ma-
terial to better understand the chemistry of the
material or system. Analytical chemists have re-
lied on traditional spectroscopy methods for over a
century to determine unknown analytes and con-
centrations. However, the interpretation of spec-
troscopy data requires substantial domain knowl-
edge and processing. Further complications arise
from systematic error of measurements, of which
may make it difficult to compare spectra from two
different instruments. A generalizable and robust
model for analysis of spectral data is needed to
achieve rapid and accurate processing for chemo-
metric application. In this study, a Convolutional
Neural Network (CNN) machine learning algo-
rithm is trained for NIR spectroscopy classifica-
tion and concentration prediction of 5 different
analytes. The model has achieved high classifi-
cation performance without additional hyperpa-
rameter optimization and outperforms traditional
chemometric methods of NIR processing. This
simple CNN architecture, along the absence of
data preprocessing of data, is intended to gener-
alize the raw spectrum.

Background

Within the domain area of Chemometrics, Process An-
alytical Technology (PAT) methodologies have become
useful methods of monitoring the trajectory of pro-
cesses and gaining novel insight through modeling.
With the FDA’s promotion of “Quality by Design”, it
has adopted PAT methods as, “...a system for design-
ing, analyzing, and controlling, manufacturing through
timely measurements (i.e., during processing) of criti-
cal quality and performance attributes of raw and in-
process materials and processes, with the goal of en-
suring final product quality” (Hinz 2006) thus, PAT has
been proposed in industry quality plans.

Among the most widely used methods for process
monitoring is spectroscopy - the measurement of inter-
actions between light and material. There are various
types of spectroscopy measurements, they are generally
applied due to the low cost, well established theoretical
background, and their ability to provide both quantita-
tive and qualitative information of an analyte.

Many areas of Al application exist within spec-
troscopy, however, the focus of this study will consider
spectroscopy in relation to PAT. The application of deep
learning techniques will focus on Near-Infrared Spec-
troscopy (NIR).

Spectroscopy has been widely used for centuries and
the interpretation of spectra data can be difficult. NIR
spectra are broad, up to 100-150 nm wide (Walsh,
Guthrie, and Burney 2000), with the spectrum being
broad bands of overlapping absorption from molecular
overtone and combination vibrations.

Previous applications of spectral analysis has re-
quired extensive domain expertise — applying feature
engineering to extract information such as peak width,
peak ratios, and peak gaps. These feature engineering
methods still suffer from the realities of non-ideal con-
ditions for measurement - numerous environment fac-
tors - which lead to varying levels of noise and spectral

shift of spectra taken at different times (the effect being
even greater for two different instruments). This exacer-
bates the difference between validated reference spec-
trum (used to identify analyte) and the test spectrum.
Thus, a more generalized model is needed to identify
minor differences in spectral data for classification and
regression.

Related Work

Traditional NIR interpretation methods have relied on
varying levels of preprocessing of spectral data, in-
cluding background subtraction, Principle Component
Analysis (PCA), moving average (data smoothing),
derivatives, and a method known as multiplicative scat-
ter correction (MSC) (Magwaza et al. 2012).

More complex and robust machine learning models
have been applied to spectroscopy as certain algorithms
have become popular. The widespread use of Convolu-
tional Neural Networks (CNN) and their application for
signal processing has made them ideal for Chemomet-
rics. Liu et al. (2017) applied a CNN architecture for
classification of Raman spectroscopy from the RRUFF
mineral dataset. Spectra preprocessing was also per-
formed for baseline correction and data augmentation
(synthetic chemical shift data).

Recently, Chatzidakis and Botton (2019) applied the
same approach as Liu et al. to classify electron energy
loss spectroscopy — using a relatively simple CNN ar-
chitecture and digitized spectroscopy images to train
a model resilient to common spectroscopy calibration
variations.

Similar to these aforementioned studies, the work
done by Bjerrum, Glahder, and Skov (2017) had ap-
plied CNN architectures to NIR data, making qualita-
tive comparisons of the features extracted by individual
kernels, and is the primary source of inspiration for this
current study.

Methodology
Data Source

The International Diffuse Reflectance Conference
(IDRC), organized by the Council for Near-Infrared
Spectroscopy (CNIRS), hosts a ”’shootout” competition
for the analysis of NIR spectroscopy using chemomet-
rics and data science methods. The most recent com-
petition, hosted in 2018, focused on The Application
of Aquaphotomics in Data Evaluation — analysis of
the water absorption band in the range of 1300-1600nm
(0.5nm resolution). The primary objective of the com-
petition was to predict solute concentration and/or clas-
sify the precise solute present in a given spectrum.

The dataset included spectra samples and corre-
sponding experimental conditions, with a traditional
calibration curve of samples for each solute in the range
of 1-100mM: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40,
50, 60, 70, 80, 90, 100). Additional experimental data
included environmental conditions (e.g. date spectrum
was taken, room temperature, and relative humidity).



Solutes Included in Dataset
Analyte Formula Molar Mass (g/mol) Structure
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Lactose monohydrate (Lac) | C12H22011-H20 360.312 OH
Sodium-chloride NaCl 58.44 Na-Cl
Potassium-chloride KC1 74.548 K-Cl

Two additional spectra datasets were provided, of
which included two different prepossessing methods for
pure water subtraction, this study will focus on raw
spectral data to create a robust generalized model.

The complete dataset and documentation is publicly
available and can be found on the CNIRS website:
https://www.cnirs.org/content.aspx?
page_id=22&club_id=409746&module_
1d=276203. Dataset summary and documentation
provided by CNIRS can be found in supplementary
information attachment.

Dataset Preparation

e The datasets provided on the site were already split
into subsets: 512 ”Calibration” spectra (78.6%, train-
ing set) and 172 “Testing” spectra (21.4%, described
as a validation set in the documentation, but used
for testing in this study). Each provided as a txt file
containing both spectral data and experimental data.
For classification training, two datasets were concate-
nated for training and later split using Stratified Cross
Validation.

e The TxT files provided were cleaned (datatype
conversions, string editing, etc.) and converted to
CSV using the Pandas library — the spectra and
experimental information were stored in separate
dataframes. The original TxT files and CSV files can
found in supplementary information.

e Standardized (zero-mean and unit-variance) the spec-
tral data of each dataset respectively.

e Created one-hot encoded vectors for the solute class
of each sample, such that the following vectors can
be used for classifcation training:

Pure Water | [1,0,0,0,0]
Ace [0,1,0,0,0]
Lac [0,0,1,0,0]

NaCl [0,0,0,1,0]
KCl [0,0,0,0,1]

Experiments and Results
Data Augmentation

Data augmentation is a common method for improving
CNN training of images and can be understood as sim-
ulating variations of an image that may be easily under-
stood by a human, but can confuse a machine learning
algorithm — an image rotated by 90° may not be as
easily classified if trained on the original image.

Data augmentation is especially useful for spec-
troscopy applications, where several translations of the
spectrum may occur between measurements (e.g. fre-
quency shifts, peak broadening, and intensity changes).
Augmentation of the spectrum was made by ran-
domly offsetting the data by +0.10*%¢, amplifying by
1£0.10*0, and adjusting the slope randomly between
0.95-1.05. This augmentation was repeated 10 times for
each sample and an example output can be seen in Fig-
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Figure 1: Example of spectra data augmentation

Network Architecture

A similar network architecture as was used by (Bjer-
rum, Glahder, and Skov 2017) and (Liu et al. 2017 was
adapted for this dataset and application.

The spectrum was first passed through a Gaussian
noise filter to aide in regularization of the model (Holm-
strom and Koistinen 1992)), then through two 1D con-
volutional layer consisting of 8 and 16 filters, respec-
tively — each with a kernal size of 32 and a rectified
linear(ReLU) activation. The output of the convolution
was flattened and passed through a dropout layer before
being passed to a fully connected neural network layer
with a ReLU activation and finally the output layer with
a softmax activation for classification. A visualization
of the architecture can be seen in Figure 2] This same
CNN architecture was applied for regression modeling
of the analyte concentration — the target being a con-
tinuous value (concentration in g/100mL) with a linear
activation for the output.
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Figure 2: Network Architecture

Multi-Classification Results

The CNN was trained for classification of the 4 differ-
ent solutes and pure water (5 classes total) with a cross
entropy loss function and 5-fold Stratified Cross Vali-
dation.

The accuracy impact of data augmentation was eval-
uated by training the network using the dataset with and
then without data augmentation. The results of both im-
plementations are shown in Table 1.

Table 1: Multi-Classification Results

Training Set | Epochs | Batch Accuracy
Size

Data Aug 10 32 82.17 £0.79%

No Data Aug | 10 16 71.07 £3.51%

(600,11 . ; \Dmﬁﬁ\‘l Seltmit


https://www.cnirs.org/content.aspx?page_id=22&club_id=409746&module_id=276203
https://www.cnirs.org/content.aspx?page_id=22&club_id=409746&module_id=276203
https://www.cnirs.org/content.aspx?page_id=22&club_id=409746&module_id=276203

Visualization of the trained model’s feature maps can
provide crucial understanding of how a CNN is learn-
ing the unique features of an image that allow it to be
properly classified.

In Figure[3] the feature maps of the 8 filters that con-
stitute the first convolution layer are reshaped to be vi-
sualized as a spectrum. These plots indicate the extrac-
tion of the spectrum frequencies corresponding to com-
binations and overtones of vibrational frequencies of the
molecules being classified.
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Figure 3: Feature Map Visualization of First Convolu-
tion Layer

Regression Results

The CNN was trained for concentration regression for
all analytes (concentrations ranging between 0-3.60312
g/100mL) with a Mean Squared Error loss function and
5-fold Stratified Cross Validation.

The Root Mean Squared Error and Huber Error eval-
uation of the augmented training dataset and the test
dataset are summarized in Table 2. The use of the Hu-
ber loss function as an error function is intended to bet-
ter account for outliers, as it is less sensitive than MSE
(Faraway 2014)). The piecewise Huber loss is defined as
follow:

Ls(y, f(z)) =
{é(y—f(x))Q for|y—f(x)|<9
§|ly—fz)| —36% otherwise

The use huber loss for training causes outliers to have
a linear linear function, thus a much greater impact on
the gradient. In the case that the sample is not an out-
lier, the function becomes a quadratic (this tolerance be-
ing the parameter, §), at which point it essentially be-
comes the MSE (Friedman 2001)). Thus, it may poten-
tially reach the minimum faster than MSE when han-
dling outliers.

Table 2: Concentration Prediction by Regression

Loss Function | Dataset R? RMSE | Huber (6 = 1.0)
MSE Training | 0.9726 | 0.1616 0.0124
Test 0.9643 | 0.1888 0.0167
Huber Training | 0.9865 | 0.1174 0.0067
Loss
Tes . 1422 .
G — 1.0) est 09798 [ 0 0.0097
Conclusions

This application of deep learning for spectroscopy has
been applied in a somewhat naive manner, without im-
plementing significant chemistry domain knowledge to
prepare the data — this being the overall goal of the
study. The model for classification of spectra is best

if trained for a generalized use, with minimal prepro-
cessing. For qualitative spectra interpretation, a robust
model could be used for sample analysis, regardless of
the experimental and environmental conditions of the
data acquisition (e.g. different instruments, baselines, or
resolution).

Ideally, the model’s relative accuracy and robustness
could be compared to those reported for the IDRC
Shootout competition winners; however, the prepro-
cessing methods and modeling algorithms are not re-
ported, thus future work may be done to compare the
CNN model reported here with other NIR datasets. The
performance benchmark reported for the competition,
RMSE, is also difficult to directly compare, as the doc-
umentation does not indicate dataset scale.

Nevertheless, the CNN model applied here exhibits
promising classification capabilities for aqueous-based
analytes. Having only trained the model using the
raw spectrum data (i.e. without subtraction of the
pure water spectrum), only applying standardization
to the data, and without substantial optimization of
hyperparameters, an accuracy of 71.07 £3.51% was
obtained. The addition of minor data augmentation
improved model accuracy by over 10% and decreased
overall error. For concentration prediction, the model
exhibited outstanding performance across all metrics
and datasets, with the Huber loss function expressing
a modest improvement. These results indicate that the
data augmentation can replicate the systematic errors
that occur in spectroscopy methods.

For additional model implementation details and re-
sults please refer to attached source code.

Future Work/Extensions

Although not used for training or data augmentation,
the experimental datasets included environmental vari-
ables, such as temperature and relative humidity. Such
environmental variables are abundant in PAT-integrated
monitoring systems, and therefore, they can be inves-
tigated for potential model improvement — knowing
other state changes of the process could potentially al-
low the model to discern the root cause of a change in
spectrum. Many monitoring systems also utilize an en-
semble of PAT instruments to gain insight, with some
instruments gathering different spectroscopic informa-
tion (e.g. UV-vis, Raman, fluorescence) that can be
modeled using the methods proposed in this study to
build an ensemble modeling structure or multi-headed
CNNGs.

Considerable space exists for optimization of the
network hyperparameters. The impact of different con-
volution layer parameters (e.g. kernel size and stride)
or pooling layers were not investigated in this study.
The optimization of which might be best understood by
interpreting the features of the spectrum learned by the
current kernels.
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